
Improving Off-road Planning Techniques with Learned Costs from
Physical Interactions

Matthew Sivaprakasam1, Samuel Triest2, Wenshan Wang2, Peng Yin2, Sebastian Scherer2

Abstract— Autonomous ground vehicles have improved
greatly over the past decades, but they still have their limitations
when it comes to off-road environments. There is still a need for
planning techniques that effectively handle physical interactions
between a vehicle and its surroundings. We present a method
of modifying a standard path planning algorithm to address
these problems by incorporating a learned model to account
for complexities that would be too hard to address manually.
The model predicts how well a vehicle will be able to follow
a potential plan in a given environment. These predictions are
then used to assign costs to their associated paths, where the
path predicted to be the most feasible will be output as the
final path. This results in a planner that doesn’t rely solely on
engineered features to evaluate traversability of obstacles, and
can also choose a better path based on an understanding of its
own capability that it has learned from previous interactions.
This modification was integrated into the Hybrid A* algorithm
and experimental results demonstrated an improvement of
14.29% over the original version on a physical platform.

I. INTRODUCTION

Path planning for ground vehicles in structured environ-
ments, such as highways, neighborhoods, and other urban
environments, is an increasingly well-understood problem.
However, using the same techniques in unstructured areas,
such as off-road or cluttered environments, presents unique
problems. When an autonomous vehicle is no longer in
an area designed for driving (e.g. a paved road), mobility
becomes limited and difficult decisions have to be made,
such as how to interact with various obstacles and terrains.

Standard path planners often rely on an engineered cost
map [1], [2], [3]. When it comes to the design of the
cost map, some methods involve a geometry-based approach
where the cost map is populated based on the 3D structure of
the environment. For example, height of and distance from an
obstacle can be used to discourage a vehicle from going too
close to it [4], [5], [6]. Other methods involve higher-level
costs through concepts such as semantic segmentation, which
allows for penalties to be designed based on the terrain itself
(e.g. lower cost for driving on a paved road versus gravel)
[7], [8]. These approaches have their drawbacks, however.
Cost maps become increasingly difficult to tune as they rely
on more environment properties, and it is often difficult to
tune them in a way that is generalizable to more than one
type of environment or scenario. Moreover, the relationship
between different properties is not always obvious. For

1Matthew Sivaprakasam is with the University of Pittsburgh, Pittsburgh,
PA 15213, USA. mjs299@pitt.edu

2Samuel Triest, Wenshan Wang, Peng Yin, and Sebastian Scherer are with
the Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213,
USA. {striest,wenshanw,pyin2,basti}@andrew.cmu.edu

Fig. 1. (a) Environmental interactions often prevent a vehicle from
maintaining its planned trajectory. However, this kind of interaction is hard
to model by existing methods (b) Potential paths considered by our planner
that uses a predictive model. Green paths are predicted to be more successful
than red paths. Given the same threshold, an occupancy-grid based planner
will output a straight path (which will fail in this case), whereas our planner
evaluates multiple paths based on its experiences of the interaction with the
environment and chooses the one it predicts to be the most successful.

example, as shown in Fig. 1 (a), a vehicle at a given velocity
might only be able to cross the rail track by approaching
at a certain angle, but a different velocity could require a
different angle. Physical interactions based on combinations
like this are difficult to model, especially as more properties
are considered. Some learning-based methods have tried
to address this problem. In [9], Prágr et al. propose to
learn a traversal cost through online incremental learning.
Quann et al. predict the energy costs of future paths based
on Gaussian process regression [10]. Zhang et al. learn a
reward function from expert demonstration using inverse
reinforcement learning [11]. But the learned costs are often
only trained on features from the environment alone, rather
than features based on the interactions between a robot and
its environment.

There are too many nuances in obstacle interaction to
simply hand-design a cost model. In this work, we present a
novel approach that models the physical interaction between
the robot and the environment using a trajectory prediction
network, which is then integrated into a modified Hybrid
A* planner [12]. The model is trained on simulation data in
order to predict the actual trajectory of a vehicle, based on
the planned trajectory in a complex environment. The result
is a planner that employs past vehicle experiences to plan
flexibly so that the output path is more likely to succeed
in unstructured areas compared to that of the same planner
without the model (Fig. 1 (b)).

The main contributions of this paper are: 1) a method
of planning in off-road environments that takes advantage
of a learned model on top of a search-based algorithm in



order to output more-feasible plans; 2) an approach to cost
calculation formed by training a prediction network on a
dataset of previous vehicle interactions; 3) the demonstration
of the potential of this approach through the implementation
and validation of our idea on a real-world robot.

II. RELATED WORK

There are plenty of both learning and non-learning ap-
proaches that relate to the off-road navigation problem
already. To address the difficulty in designing the cost
map, Lu and Hershberger introduced layered costmaps [13],
which provides a way to maintain contextual information
in planning. Instead of one costmap, several costmaps are
first generated based on specific semantics. For example,
different types of obstacles could have their own costmaps,
in which the costs are calculated differently depending on
the obstacle. These costmaps are then fed into a ”master”
costmap which is used for planning. Souza and Goncalves
introduce an occupancy-elevation grid structure [14]. This
has some advantages over a normal occupancy grid, in that
information about height and uncertainty is also stored. They
provide an opportunity for new planning techniques over
their grid, but one limitation is that no other contextual
information is stored. Schwarz and Behnke introduced an
approach to unknown terrain traversal by taking advantage
of omnidirectional height [15]. They used a 2.5D height map
to calculate elevation differences in different dimensions in
order to create a new map used to calculate traversability.
This approach too, however, doesn’t incorporate any other
concepts in planning besides height.

Some noteworthy learning-based approaches also exist.
Prágr et al. introduce a way to learn terrain traversal costs
online, in the context of exploration [?]. The result is a
multi-legged robot that can learn new navigation goals and
plans as it explores. Quann and Ojeda propose a method
of predicting plan costs in terms of vehicle energy usage,
by collecting plan and state information and monitoring
power consumption to create a probabilistic model [10]. Finn
and Levine take advantage of model-based reinforcement
learning to achieve object pushing tasks [16].They train a
learned model that can predict the outcome of a sequence of
actions, given an RGB input. Arruda and Mathew are able
to achieve a similar task by instead creating a model that is
uncertainty averse [17]. Pfeiffer and Schwesinger were also
able to use a model to create a socially-compliant planner
trained on human-human interactions [18]. These methods
establish the potential for learned models in planning tasks,
but none of them yet provide a solution for the specific
problem we are addressing in this paper.

III. BACKGROUND AND INITIAL APPROACH

All of our modifications were implemented based off of
the PythonRobotics library [19], which includes several path
planning algorithms with implementations that are easy to
use and modify. Our initial idea was to enhance a simple
search-based planner with various additional costs, using
Hybrid A* as a starting point (which primarily uses costs

Fig. 2. Paths output by the original algorithm (left), and the modified
version with additional height costs (right). The cost inflation around
obstacles allowed it to only plan over obstacles when necessary, in an effort
to minimize risk of failure without using a learned model.

derived from distance to goal and steering angle). As shown
in Fig. 2, a testing environment was set up in AirSim [20]
consisting of several obstacles of random height and orien-
tation. We were able to test the limits of the vehicle/planner
setup by creating arrangements that can’t be easily navigated
by relying heavily on a height threshold for obstacles.

A. Integrating an Obstacle-based Cost

In order to add a planning cost derived from obstacles, an
approach similar to layered costmaps from [13] was used. In
the baseline algorithm, each planning node has an associated
cost, calculated based on properties such as length of path
from start, distance to goal, forward vs. reverse direction,
and steering. We modified the nodes so that each node close
enough to an obstacle is given an additional cost that is
proportional to the obstacle’s height (multiplied by a weight
that can be set by the user). This causes the algorithm to
guide planning away from a given obstacle, until the cost
associated with going around it becomes greater than the
cost of going over it.

B. Initial Results With Hybrid A*

Using our modified cost, the planner was able to find
more efficient paths than the original version in some cases
(see Fig. 2). However, the success of our hand-designed cost
did not translate well to various environments unless it was
manually tuned each time.

Fig. 3. For data collection, obstacles were systematically placed with vary-
ing orientation and height(left,middle), with different goal locations(shown
with red dot). Data was also collected by randomly placing multiple
obstacles in a similar fashion(right).



IV. LEARNING OBSTACLE TRAVERSAL COSTS

Based on our initial approach, we concluded that ac-
counting for height and angle alone wouldn’t be enough
to make a significant improvement over the baseline path
planner. Moreover, manually choosing obstacle properties,
such as height, means potentially excluding a lot of useful
information about an environment that can’t necessarily be
hard-coded into a planner effectively. As obstacle arrange-
ments get more complex, manually modeling planning costs
becomes increasingly difficult. We hypothesized that this
problem could be addressed, at least in part, by incorporating
a predictive model into the planner that predicts an actual
path given a desired path. Data was collected in simulation
and used to train a predictor, whose task is to predict the
actual path of a vehicle given a desired path with given veloc-
ity. Our framework involves feeding potential paths at various
velocities into the model, and choosing the path/velocity pair
that results in the highest similarity between the desired path
and the predicted path.

A. Experience Collection

For the rest of our approach, CoppeliaSim (previously
known as V-REP) [21] was used instead of AirSim due to
its better physics engine. The python toolkit PyRep [22]
allowed us to easily interface with the simulator to set up
tests and collect data. In order to construct a dataset to train
a model on, we aggregated data from two distinct phases of
experience collection.

The first phase of experience collection was a systematic
process. A single obstacle was placed in between the vehicle
and it’s goal location and the vehicle was made to go over the
obstacle in a straight line towards the goal, with the obstacle
having different properties. The following parameters were
iterated through:

1) Obstacle angle (-60:60 degrees)
2) Obstacle height (.02:.14 meters)
3) Goal location (-.36:.36 meters laterally with respect to

vehicle)
4) Vehicle velocity (.05:.25 m/s)

so that every combination of different obstacle angle/height,
goal location, and vehicle velocity were achieved for a total
of 5250 samples.

The second phase of experience was collected in a random
manner. 1, 2, and 3 obstacles with randomized heights and
orientations were placed in the way of the vehicle, which
was given a random velocity and a random lateral location
for the goal. This gave us an additional 6000 samples (2000
for each quantity of obstacles). Fig. 3 shows examples, from
both systematic and random data collection, of how obstacles
and the goal locations were placed.

For each sample, a heightmap of the obstacles, planned
trajectory and velocity, and resulting simulated trajectory and
velocity (where a trajectory consists of an x and y location,
as well as the yaw) was recorded. From each trajectory, we
generated 50 training samples by randomly sampling a start
time, finding the closest path point to the robot’s position at

TABLE I
DESCRIPTION OF THE VGG BLOCK USED FOR THE TRAJECTORY

PREDICTION NETWORK.

Layer Input Dim Output Dim
Batch Norm Cin×W ×H Cin×W ×H

Conv1 (3×3) Cin×W ×H Cin×W ×H
Conv2 (3×3) Cin×W ×H Cout ×W ×H

Max Pool Cout ×W ×H Cout × W
2 ×

W
2

that time, and recording the next 0.5m of plan and ground-
truth trajectory, as well as a cropped local heightmap and
robot’s current state (position, velocity). All coordinates are
transformed to the robot’s local coordinates.

B. Training the Model

We use a neural network to predict the next 0.5m of
trajectory (parameterized as the position and yaw of the
robot), given the current robot state (as position, yaw and
linear velocity), the next 0.5m of the planned trajectory, and
a local crop of the heightmap.

We obtain the state vector and planned trajectory from the
robot’s odometry and path planner, respectively. We obtain
the local crop of the heightmap by transforming the map to
the robot’s local coordinate frame and take a 1m× 1m box
centered at the robot’s location. The heightmap is downscaled
to a 24×24×1 image.

The heightmap is fed through three VGG-style [23] blocks,
where each block V GGcin,cout (X) transforms a H×W × cin
image X to a H

2 ×
W
2 × cout image. This block is described

in Table I. Given the flattened heightmap features from
the CNN block, we apply four linear layers with tanh
activations to generate our trajectory prediction. The full
network architecture is provided in Table II.

We train our model using Adam [24] to minimize the
mean squared error between our prediction and the next 0.5m
of ground-truth trajectory from our training samples. We
observed that the model reached convergence after roughly
200 epochs, achieving a root mean-squared error of 1.33 on
held-out validation trajectories.

C. Integrating into the Planner

The baseline Hybrid A* algorithm works by trying to
create an unobstructed Reeds-Shepp path [25] from the
current node location to the goal. If there is a free path
(determined by the lack of any obstacles with a height above
the set threshold), it is immediately output as the resulting
planned path. Otherwise, more nodes are expanded until an
unobstructed path is obtained.

Due to the nature of the planning nodes in the original
algorithm, we integrated our model into the planner by
associating a new cost with whole paths associated with
a node rather than the node itself. Any time a free path
is found, it is broken down into segments which are then
fed into the learned model, along with a local heightmap
and potential velocity. The model outputs a predicted path
(rather than a predicted cost) which is then evaluated against
the desired path, and a cost is assigned to it by taking the



TABLE II
THE NETWORK ARCHITECTURE

Layer Input Input Dim Output Output Dim
V GG1,32 Heightmap 1×24×24 Hmap feat1 32×12×12
V GG32,64 Hmap feat1 32×12×12 Hmap feat2 64×6×6
V GG64,128 Hmap feat2 64×6×6 Hmap feat3 128×3×3
Reshape Hmap feat3 128×3×3 Hmap feat flat 1152

Linear1186,512 Hmap feat flat ‖ state ‖ plan 1186 feat1 512
Linear512,256 feat1 512 feat2 256
Linear256,256 feat2 256 feat3 256
Linear256,30 feat3 256 pred flat 30

Reshape pred flat 30 pred 10×3

cumulative sum of the squared Euclidean distances between
the desired path points and their corresponding predicted
path points. This process is done 5 times per evaluated
path, each time with a different potential velocity from the
list [.05, .1,.15,.20,.25] (determined based on the range of
simulated velocities that were seen by the model in training).
The path/velocity pair with the lowest cost is kept track
of, so any time a new path/velocity has a lower cost, it
replaces the current best. This process of expanding nodes
and evaluating paths continues until either the best path’s
cost is below a desired minimum, or the planner has been
planning for a maximum amount of time (both of which can
be set by the user). The maximum time and minimum cost
was implemented to account for the decrease in efficiency
caused by iterating over every path. By adjusting these, the
planner can be made to prioritize speed over path feasibility,
and vice versa. The final trajectory output by this process
consists of a set of x,y, and yaw points, as well as a desired
velocity which the vehicle then uses to carry out a path.

The result of this modification is a planner that can choose
whether or not to go around an obstacle, even if it isn’t
thresholded into the occupancy grid, as well as adjust it’s
output based on how the vehicle might interact with its
environment (see Fig. 4). Moreover, it can predict which
velocity will increase the likelihood of success.

V. EXPERIMENTAL RESULTS WITH COST
PREDICTION

In order to evaluate our modifications, we wanted to
compare it’s performance to that of the original Hybrid A*
algorithm both in simulation and in real life. Our primary
metric was percentage of successful attempts to reach the
goal by using a given planner, as well as the time taken to
reach the goal.

A. Testing in Simulation

We set up a series of tests in CoppeliaSim, in which 1,
2, 3, and 4 random obstacles were placed in the way of the
vehicle. Both the original Hybrid A* planner and our version
were given the same obstacle threshold, and the original
planner was given a set velocity of .1. This ended in 400
tests (100 for each quantity of obstacles) with the results
shown in Table III.

Fig. 5 (a) and (b) show a compelling example where the
impact of the learned model is visible. Even in cases where

both planners decide to go over a series of obstacles, there
are still different ways to do so. Our version of the planner
was able to successfully plan a path with a certain velocity
that resulted in a success, whereas the original planner failed
to do so.

Fig. 4. Some resulting plans output by the modified planner. All obstacle
heights are under the set threshold, but the model avoids getting stuck on
the higher obstacle (left) and correctly deems it safe enough to go over the
lower obstacle (middle) and through the complex example (right).

Fig. 5. An example test where both planners try to go over the obstacles, but
the baseline planner (right) results in a failure whereas the planner using
our learned model (left) results in a success. Red represents the planned
path, blue represents the resulting trajectory, and teal and yellow represent
obstacles of differing height, where yellow obstacles are taller.

B. Testing on Ground Robot

In order to validate the efficacy of our planner on a physi-
cal robot, we constructed a testing environment designed for
a Mushr robot [26] to navigate through. The environment
was a roughly 5m × 6m box which we filled with 80/20
of varying lengths, widths and heights. Of particular impor-
tance was the heights of our obstacles, which were either
3cm, 4cm, 5cm or 8cm. In our preliminary experiments,



TABLE III
RESULTS OF SIMULATED TESTING.

Planner Success Rate Avg. Time to Reach Goal (s)
Without Model 34% 66.97

With Model (ours) 64% 41.63

Fig. 6. An image of our testing environment. The robot is traversing a
5cm tall obstacle. The general shape of the the task is indicated with the
red arrow. The robot is unable to reach the goal without interacting with
obstacles at least 4cm in height.

we observed that the Mushr robot could consistently clear
the 3cm obstacle and could never clear the 8cm obstacle.
The robot could clear the 4cm and 5cm obstacles if it
approached the obstacle a high enough speed at a steep
approach angle (we observed that an approach angle within
±15◦ of perpendicular was most likely to succeed).

Since the vehicular dynamics were different for the Mushr
robot as compared to the robot in CoppeliaSim, we collected
98 trajectories of the Mushr robot interacting with the
obstacles, varying the obstacle height, depth and approach
angle. Using these trajectories, we fine-tuned our network
to compensate for the change in interactions from the Cop-
peliaSim scenarios. This was accomplished by repeating the
training procedure with the Mushr data using the model
trained in CoppeliaSim as an initialization. The trajectories
and velocities outputted by our planner were followed using
the a feedback controller [27]. The robot localized itself in
the environment using a particle filter reading scans from a
ydlidar. We compared two planners - hybrid A* without a
learned cost, and hybrid A* using our fine-tuned network as
a learned cost function.

A visualization of our testing scenario is provided in Fig. 6
and Fig. 7. The robot was tasked with reaching the upper-
right of the environment from the lower-left. We ran ten tests
for each planner, varying the location and orientation of the
start point, and chose one of two orientations for the goal
point. To measure the efficacy of our model, we report the
success rate of each planner as well as the time taken to
reach the goal point.

Shown in Fig. 8 are representative plans and trajectories
from our tests. While both planners are tasked with navigat-
ing to the same goal point, we can observe that the planner
with a learned model plans a much steeper approach towards
the 5cm obstacle. This aligns with our observations that the

TABLE IV
RESULTS OF PHYSICAL TESTING.

Planner Success Rate Avg. Time to Reach Goal (s)
Without Model 70 % 10.6

With Model (ours) 80 % 7.8

robot is more likely to clear tall obstacles by considering a
steeper approach angle. The efficacy of this planning decision
is observed in the actual executed trajectories (Fig. 8), as the
robot is able to smoothly execute the trajectory given by the
planner with a learned model, but gets stuck on the obstacle
when executing the baseline planner’s trajectory.

Fig. 7. A visualization of our physical test environment, where the robot’s
goal is to reach the upper-right from the lower-left. Shown above is a view
of the testing environment, with the plans from the heightmap superimposed
on it. Below is the heightmap, with two representative plans for how to reach
the goal, depending on the desired orientation. The robot is unable to reach
the goal without interacting with obstacles at least 4cm in height.

1) Failure Modes: During testing, we observed two pri-
mary factors that causes the planner to fail; decoupling
of planning and control, and incorrect model predictions.
Fig. 9 shows an example where the path-following controller
deviated from the planned trajectory, resulting in the vehi-
cle colliding with an adjacent obstacle. Fig. 10 illustrates
two similar trajectories where one succeeds in clearing the
obstacle, and the other doesn’t.



Fig. 8. A visualization of one of our test environments, where the robot is
tasked with navigating from the lower-left to the upper-right. Shown in green
is the plan produced by Hybrid A* with a learned model, and shown in red
is the plan produced by Hybrid A* without a learned model. We can observe
that the planner with the model chooses a path with a steeper approach angle,
which we observed empirically to result in a higher change of successfully
clearing the obstacle. We observe that the plan from the planner with the
model results in the vehicle successfully clearing the obstacle, while the
plan produced by the baseline planner results in the vehicle getting stuck
on the obstacle for a few seconds.

Fig. 9. A failure case in which the controller deviates from the intended
path.

VI. CONCLUSION AND FUTURE WORK

This paper presents one method of improving standard
path planning in complex environments by introducing effec-
tive cost calculations that account for properties that would
otherwise be difficult to represent. The key contributions that
distinguish this work from prior methods are the introduction
of a new planning framework for off-road driving that allows
for the combination of search-based planning with learning-
based models, and the demonstration of the potential of
predictive models in representing physical interactions in a
way that can be used to improve planning. Moreover, we
were able to validate our results on a real system.

There are plenty of future directions to be taken based off
of this work. On of the main advantages of our method is
that it can choose the best velocity for a path. However, it is
still limited to one velocity for the whole path. A promising
next step for improving the planner in complex environments
would be to implement a stage where it chooses the best

Fig. 10. Two similar trajectories in which one succeeds in clearing the
obstacle and the other doesn’t.

velocity to follow along each point in a path.
Another direction to take could be improving the learning

component, perhaps by allowing for more generalizability.
Throughout testing, only one type of obstacle was used
(rectangular). Additionally, all of our data was collected
using one vehicle, so it is unlikely that our planner will be
as effective when applied to other vehicles with different
dynamic constraints. These problems could potentially be
addressed by setting up an online learning component in
the planner. One could then use the integrate the planner
into their own vehicle, or in a different environment, and the
model could continuously be adjusted and in turn improve
the performance of the planner. This could help mitigate the
failure case observed in Fig 9.

Another direction for future work could be using more
sophisticated trajectory prediction techniques. As can be
observed in Fig. 10, minute changes in state can result in very
different resulting trajectories over obstacles. We expect that
incorporating techniques that can handle these discontinuities
can significantly improve the performance of the planner.

Finally, we are hopeful that our predictive model approach
will integrate well with other path planning algorithms, but
this has yet to be tested. A thorough evaluation of its
effectiveness in other planners would help determine whether
this approach is an appealing method to provide another
way for planners to include more contextual information that
would otherwise be hard to model.

ACKNOWLEDGMENT

This work was supported by ARL award
#W911NF1820218.

REFERENCES

[1] James Bruce and Manuela M Veloso. Real-time randomized path
planning for robot navigation. In Robot Soccer World Cup, pages
288–295. Springer, 2002.

[2] Sebastian Scherer and Sanjiv Singh. Multiple-objective motion plan-
ning for unmanned aerial vehicles. In IEEE International Conference
on Intelligent Robots and Systems, pages 2207–2214, San Francisco,
CA, September 2011. IEEE.



[3] Sanjiban Choudhury, Sebastian Scherer, and Sanjiv Singh. Realtime
alternate routes planning: the rrt*-ar algorithm. Technical Report
December, Carnegie Mellon University, Pittsburgh, PA, 2012.

[4] Pierre Sermanet, Raia Hadsell, Marco Scoffier, Matt Grimes, Jan Ben,
Ayse Erkan, Chris Crudele, Urs Miller, and Yann LeCun. A multirange
architecture for collision-free off-road robot navigation. Journal of
Field Robotics, 26(1):52–87, 2009.

[5] Haris Balta, Geert De Cubber, Daniela Doroftei, Yvan Baudoin, and
Hichem Sahli. Terrain traversability analysis for off-road robots using
time-of-flight 3d sensing. In 7th IARP International Workshop on
Robotics for Risky Environment-Extreme Robotics, Saint-Petersburg,
Russia, 2013.

[6] Rogerio Bonatti, Yanfu Zhang, Sanjiban Choudhury, Wenshan Wang,
and Sebastian Scherer. Autonomous Drone Cinematographer: Using
Artistic Principles to Create Smooth, Safe, Occlusion-Free Trajectories
for Aerial Filming. In International Symposium on Experimental
Robotics, pages 119–129. Springer, November 2020.

[7] Daniel Maturana, Po-Wei Chou, Masashi Uenoyama, and Sebastian
Scherer. Real-Time Semantic Mapping for Autonomous Off-Road
Navigation. In Field and Service Robotics, pages 335–350. Springer,
Cham, 2018.

[8] Dong-Ki Kim, Daniel Maturana, Masashi Uenoyama, and Sebastian
Scherer. Season-Invariant Semantic Segmentation with a Deep Mul-
timodal Network. In Field and Service Robotics, pages 255–270.
Springer, Cham, 2018.

[9] Miloš Prágr, Petr Čı́žek, Jan Bayer, and Jan Faigl. Online incremental
learning of the terrain traversal cost in autonomous exploration. In
Robotics: Science and Systems, 06 2019.

[10] Michael Quann, Lauro Ojeda, William Smith, Denise Rizzo, Matthew
Castanier, and Kira Barton. Off-road ground robot path energy cost
prediction through probabilistic spatial mapping. Journal of Field
Robotics, 37(3):421–439, 2019.

[11] Yanfu Zhang, Wenshan Wang, Rogerio Bonatti, Daniel Maturana, and
Sebastian Scherer. Integrating kinematics and environment context into
deep inverse reinforcement learning for predicting off-road vehicle
trajectories. In Conference on Robot Learning. Journal of Machine
Learning Research, October 2018.

[12] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James
Diebel. Practical search techniques in path planning for autonomous
driving. In Proceedings of the First International Symposium on
Search Techniques in Artificial Intelligence and Robotics (STAIR-08,
2008.

[13] D. V. Lu, D. Hershberger, and W. D. Smart. Layered costmaps
for context-sensitive navigation. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 709–715, 2014.

[14] Anderson Souza and Luiz M. G. Gonçalves. Occupancy-elevation grid:
an alternative approach for robotic mapping and navigation. Robotica,
34(11):2592–2609, 2016.

[15] M. Schwarz and S. Behnke. Local navigation in rough terrain
using omnidirectional height. In ISR/Robotik 2014; 41st International
Symposium on Robotics, pages 1–6, 2014.

[16] Chelsea Finn and Sergey Levine. Deep visual foresight for planning
robot motion, 2017.

[17] Ermano Arruda, Michael J. Mathew, Marek Kopicki, Michael Mistry,
Morteza Azad, and Jeremy L. Wyatt. Uncertainty averse pushing
with model predictive path integral control. 2017 IEEE-RAS 17th
International Conference on Humanoid Robotics (Humanoids), Nov
2017.

[18] M. Pfeiffer, U. Schwesinger, H. Sommer, E. Galceran, and R. Sieg-
wart. Predicting actions to act predictably: Cooperative partial motion
planning with maximum entropy models. In 2016 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages
2096–2101, 2016.

[19] Atsushi Sakai, Daniel Ingram, Joseph Dinius, Karan Chawla, Antonin
Raffin, and Alexis Paques. Pythonrobotics: a python code collection
of robotics algorithms, 2018.

[20] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor.
Airsim: High-fidelity visual and physical simulation for autonomous
vehicles. In Field and Service Robotics, 2017.

[21] E. Rohmer, S. P. N. Singh, and M. Freese. Coppeliasim (formerly
v-rep): a versatile and scalable robot simulation framework. In Proc.
of The International Conference on Intelligent Robots and Systems
(IROS), 2013. www.coppeliarobotics.com.

[22] Stephen James, Marc Freese, and Andrew J. Davison. Pyrep: Bringing
v-rep to deep robot learning. arXiv preprint arXiv:1906.11176, 2019.

[23] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. In International Conference
on Learning Representations, 2015.

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd
International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.

[25] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes both
forwards and backwards. Pacific J. Math., 145(2):367–393, 1990.

[26] Siddhartha S. Srinivasa, Patrick Lancaster, Johan Michalove, Matt
Schmittle, Colin Summers, Matthew Rockett, Joshua R. Smith, San-
jiban Chouhury, Christoforos Mavrogiannis, and Fereshteh Sadeghi.
MuSHR: A low-cost, open-source robotic racecar for education and
research. CoRR, abs/1908.08031, 2019.

[27] R Craig Coulter. Implementation of the pure pursuit path tracking
algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA
Robotics INST, 1992.


